Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
J Neurotrauma ; 40(23-24): 2500-2521, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37606910

RESUMO

Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. In the present study, we focused on arm and hand function, seeking to highlight and optimize crude as well as fine motor control of the forearm and digits at lengthy chronic stages post-injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Traumatismos da Medula Espinal , Animais , Feminino , Ratos , Condroitina ABC Liase/farmacologia , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Regeneração Nervosa/fisiologia , Ratos Sprague-Dawley , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Medula Espinal , Membro Anterior
2.
Brain Res Bull ; 189: 80-101, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988785

RESUMO

Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aß), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.


Assuntos
Síndromes Neurotóxicas , Fosfolipases A2 Secretórias , Peptídeos beta-Amiloides/metabolismo , Antígenos de Superfície/metabolismo , Antígenos de Superfície/farmacologia , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catepsinas/metabolismo , Ceramidas , Quimiocinas/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Ácido Glutâmico/metabolismo , Proteínas HMGB/metabolismo , Proteínas HMGB/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Ligantes , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Proteínas Inflamatórias de Macrófagos/metabolismo , Proteínas Inflamatórias de Macrófagos/farmacologia , Microglia/metabolismo , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/toxicidade , Óxido Nítrico/metabolismo , Fosfolipases A2 Secretórias/metabolismo , Fosfolipases A2 Secretórias/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Br J Pharmacol ; 179(20): 4857-4877, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35797426

RESUMO

BACKGROUND AND PURPOSE: Chondroitin sulfate proteoglycan (CSPG) constitutes the neurogenic niche in the hippocampus. The reduction of hippocampal neurogenesis is involved in ageing-related cognitive decline and dementia. The purpose of this study is to find candidates that improve cognitive function by analysing the effects of memantine (MEM), a therapeutic agent for Alzheimer's disease, on CSPG and adult hippocampal neurogenesis. EXPERIMENTAL APPROACH: The effects of MEM on neurogenesis-related cells and CSPG content were assessed in the hippocampus of middle-aged mice. The MEM-induced alterations in gene expressions of neurotrophins and enzymes associated with biosynthesis and degradation of CSPG in the hippocampus also were measured. The effects of MEM on cognitive function were estimated using a behavioural test battery. The same set of behavioural tests was applied to evaluate the effects of pharmacological depletion of CSPG in the hippocampus. KEY RESULTS: The densities of newborn granule cells and content of CSPG in the hippocampus were increased by MEM. The expression levels of the enzyme responsible for the biosynthesis CSPG were increased by MEM. The neurotrophin-related molecules were activated by MEM. Short- and long-term memory performance was improved by MEM. Pharmacological depletion of CSPG impairs the effects of MEM on cognitive improvement in middle-aged mice. CONCLUSION AND IMPLICATIONS: MEM regulates the biosynthesis and degradation of CSPG, which may underlie the improvement of cognitive function via the promotion of adult hippocampal neurogenesis. These results imply that CSPG-related enzymes potentially may be attractive candidates for the treatment of ageing-related cognitive decline.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Memantina , Animais , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Cognição , Memantina/farmacologia , Camundongos , Fatores de Crescimento Neural/farmacologia , Neurogênese
4.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199496

RESUMO

Nucleus pulposus (NP) cells are exposed to changes in hydrostatic pressure (HP) and osmotic pressure within the intervertebral disc. We focused on main disc matrix components, chondroitin sulfate proteoglycan (CSPG) and hyaluronan (HA) to elucidate the capability of augmented CSPG to enhance the anabolism of bovine NP (bNP) cells under repetitive changes in HP at high osmolality. Aggrecan expression with CSPG in the absence of HP was significantly upregulated compared to the no-material control (phosphate buffer saline) under no HP at 3 days, and aggrecan expression with CSPG under HP was significantly higher than the control with HA under HP at 12 days. Collagen type I expression under no HP was significantly lower with CSPG than in controls at 3 days. Although matrix metalloproteinase 13 expression under HP was downregulated compared to no HP, it was significantly greater with HA than the control and CSPG, even under HP. Immunohistology revealed the involvement of mechanoreceptor of transient receptor potential vanilloid-4 activation under HP, suggesting an HP transduction mechanism. Addition of CSPG had anabolic and anti-fibrotic effects on bNP cells during the early culture period under no HP; furthermore, it showed synergy with dynamic HP to increase bNP-cell anabolism at later time points.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/farmacologia , Pressão Hidrostática , Degeneração do Disco Intervertebral/terapia , Disco Intervertebral/efeitos dos fármacos , Anabolizantes/farmacologia , Animais , Bovinos , Células Cultivadas , Matriz Extracelular/efeitos dos fármacos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/patologia
5.
J Neurosci Res ; 99(4): 1009-1023, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453083

RESUMO

Axonal damage and the subsequent interruption of intact neuronal pathways in the spinal cord are largely responsible for the loss of motor function after injury. Further exacerbating this loss is the demyelination of neighboring uninjured axons. The post-injury environment is hostile to repair, with inflammation, a high expression of chondroitin sulfate proteoglycans (CSPGs) around the glial scar, and myelin breakdown. Numerous studies have demonstrated that treatment with the enzyme chondroitinase ABC (cABC) creates a permissive environment around a spinal lesion that permits axonal regeneration. Neurotrophic factors like brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophic factor-3 (NT-3), and ciliary neurotrophic factor (CNTF) have been used to promote neuronal survival and stimulate axonal growth. CSPGs expressed near a lesion also inhibit migration and differentiation of endogenous oligodendrocyte progenitor cells (OPCs) in the spinal cord, and cABC treatment can neutralize this inhibition. This study examined the neurotrophins commonly used to stimulate axonal regeneration after injury and their potential effects on OPCs cultured in the presence of CSPGs. The results reveal differential effects on OPCs, with BDNF and GDNF promoting process outgrowth and NT-3 stimulating differentiation of OPCs, while CNTF appears to have no observable effect. This finding suggests that certain neurotrophic agents commonly utilized to stimulate axonal regeneration after a spinal injury may also have a beneficial effect on the endogenous oligodendroglial cells as well.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/farmacologia , Fatores de Crescimento Neural/farmacologia , Células Precursoras de Oligodendrócitos/metabolismo , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator Neurotrófico Ciliar/farmacologia , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Masculino , Regeneração Nervosa/efeitos dos fármacos , Neurônios/metabolismo , Neurotrofina 3/farmacologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal
6.
J Neurochem ; 157(3): 494-507, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33320336

RESUMO

Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a member of a family of lipid phosphatase related proteins, integral membrane proteins characterized by six transmembrane domains. This family of proteins is enriched in the brain and recent data indicate potential pleiotropic functions in several different contexts. An inherent ability of this family of proteins is to induce morphological changes, and we have previously reported that members of this family interact with each other and may function co-operatively. However, the function of PLPPR1 is not yet understood. Here we show that the expression of PLPPR1 reduces the inhibition of neurite outgrowth of cultured mouse hippocampal neurons by chondroitin sulfate proteoglycans and the retraction of neurites of Neuro-2a cells by lysophosphatidic acid (LPA). Further, we show that PLPPR1 reduces the activation of Ras homolog family member A (RhoA) by LPA in Neuro-2a cells, and that this is because of an association of PLPPR1with the Rho-specific guanine nucleotide dissociation inhibitor (RhoGDI1). These results establish a novel signaling pathway for the PLPPR1 protein.


Assuntos
Axônios/fisiologia , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Hipocampo/citologia , Imuno-Histoquímica , Lisofosfolipídeos/farmacologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neuritos , Proteômica , Transfecção , Proteínas ras/fisiologia , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/genética
7.
Front Immunol ; 11: 232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194548

RESUMO

Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a linear acidic polysaccharide comprised of repeating disaccharides, modified with sulfate groups at various positions. Except for hyaluronan (HA), GAGs are covalently bound to core proteins, forming proteoglycans (PGs). With highly negative charges, GAGs interact with a variety of physiologically active molecules, including cytokines, chemokines, and growth factors, and control cell behavior during development and in the progression of diseases, including cancer, infections, and inflammation. Heparan sulfate (HS), another type of GAG, and HA are well reported as regulators for leukocyte migration at sites of inflammation. There have been many reports on the regulation of immune cell function by HS and HA; however, regulation of immune cells by CS has not yet been fully understood. This article focuses on the regulatory function of CS in antigen-presenting cells, including macrophages and dendritic cells, and refers to CSPGs, such as versican and biglycan, and the cell surface proteoglycan, syndecan.


Assuntos
Imunidade Adaptativa , Células Apresentadoras de Antígenos/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/fisiologia , Sulfatos de Condroitina/fisiologia , Células Dendríticas/efeitos dos fármacos , Imunidade Inata , Macrófagos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Biglicano/fisiologia , Configuração de Carboidratos , Sequência de Carboidratos , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/farmacologia , Células Dendríticas/imunologia , Humanos , Receptores de Hialuronatos/fisiologia , Macrófagos/imunologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/fisiologia , Relação Estrutura-Atividade , Sindecanas/fisiologia , Receptores Toll-Like/fisiologia , Versicanas/fisiologia
8.
ACS Chem Neurosci ; 11(3): 231-232, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31939650

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are the most abundant components of glial scar formed after severe traumatic brain injury as well as spinal cord injury and play a crucial inhibitory role in axonal regeneration by selective contraction of filopodia of the growth cone of sprouting neurites. Healing of central nervous system (CNS) injury requires degradation of the glycosamine glycan backbone of CSPGs in order to reduce the inhibitory effect of the CSPG layer. The key focus of this Viewpoint is to address a few important regenerative approaches useful for overcoming the inhibitory barrier caused by chondroitin sulfate proteoglycans.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Humanos , Regeneração Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Traumatismos da Medula Espinal/metabolismo
9.
J Cell Biol ; 218(6): 1871-1890, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31068376

RESUMO

Inhibition of histone deacetylase 6 (HDAC6) was shown to support axon growth on the nonpermissive substrates myelin-associated glycoprotein (MAG) and chondroitin sulfate proteoglycans (CSPGs). Though HDAC6 deacetylates α-tubulin, we find that another HDAC6 substrate contributes to this axon growth failure. HDAC6 is known to impact transport of mitochondria, and we show that mitochondria accumulate in distal axons after HDAC6 inhibition. Miro and Milton proteins link mitochondria to motor proteins for axon transport. Exposing neurons to MAG and CSPGs decreases acetylation of Miro1 on Lysine 105 (K105) and decreases axonal mitochondrial transport. HDAC6 inhibition increases acetylated Miro1 in axons, and acetyl-mimetic Miro1 K105Q prevents CSPG-dependent decreases in mitochondrial transport and axon growth. MAG- and CSPG-dependent deacetylation of Miro1 requires RhoA/ROCK activation and downstream intracellular Ca2+ increase, and Miro1 K105Q prevents the decrease in axonal mitochondria seen with activated RhoA and elevated Ca2+ These data point to HDAC6-dependent deacetylation of Miro1 as a mediator of axon growth inhibition through decreased mitochondrial transport.


Assuntos
Desacetilase 6 de Histona/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteínas rho de Ligação ao GTP/genética , Quinases Associadas a rho/genética , Acetilação/efeitos dos fármacos , Animais , Transporte Axonal/efeitos dos fármacos , Transporte Axonal/genética , Cálcio/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica , Desacetilase 6 de Histona/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Glicoproteína Associada a Mielina/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
10.
Neurosci Lett ; 683: 61-68, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-29953923

RESUMO

There are global efforts in developing therapeutic strategies for central nervous system (CNS) injuries using multimodal approaches. Nogo receptor type 1 (NgR1) has been known as a primary molecule limiting neuronal regeneration in the adult CNS. We identified lateral olfactory tract usher substance (LOTUS) as an endogenous NgR1 antagonist. Membrane-bound LOTUS interacts with NgR1 and inhibits its function by blocking its ligand binding. Five molecules including Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), B lymphocyte stimulator (BLyS) and chondroitin sulfate proteoglycans (CSPGs) have been identified as NgR1 ligands. These ligands bind to NgR1 and activate NgR1 signaling, leading to axon growth inhibition such as growth cone collapse and neurite outgrowth inhibition. We have recently reported that the soluble form of LOTUS (s-LOTUS) also suppressed NgR1-mediated signaling induced by myelin axonal inhibitors (MAIs) including Nogo, MAG and OMgp by binding with both NgR1 and its co-receptor p75 neurotrophin receptor (p75NTR). Though s-LOTUS has been reported to suppress MAIs, whether s-LOTUS also suppresses NgR1 signaling induced by BLyS and CSPGs remains to be elucidated. Here, we show that s-LOTUS inhibits NgR1-mediated signaling induced by BLyS and CSPGs. Although treatment with s-LOTUS did not suppress BLyS-NgR1 interaction, s-LOTUS inhibited growth cone collapse and neurite outgrowth inhibition induced by BLyS and CSPGs in chick dorsal root ganglion (DRG) neurons. Furthermore, s-LOTUS compensated for the suppressive function of endogenous LOTUS in NgR1-mediated signaling in olfactory bulb neurons of lotus-knockout mice. These findings suggest that s-LOTUS is a potent therapeutic agent for neuronal regeneration in the CNS injuries.


Assuntos
Fator Ativador de Células B/farmacologia , Proteínas de Ligação ao Cálcio/farmacologia , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Receptor Nogo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Células COS , Células Cultivadas , Galinhas , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Receptor Nogo 1/fisiologia , Transdução de Sinais/fisiologia , Solubilidade
11.
Brain ; 141(4): 1094-1110, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506186

RESUMO

Multiple sclerosis presents with profound changes in the network of molecules involved in maintaining central nervous system architecture, the extracellular matrix. The extracellular matrix components, particularly the chondroitin sulfate proteoglycans, have functions beyond structural support including their potential interaction with, and regulation of, inflammatory molecules. To investigate the roles of chondroitin sulfate proteoglycans in multiple sclerosis, we used the experimental autoimmune encephalomyelitis model in a time course study. We found that the 4-sulfated glycosaminoglycan side chains of chondroitin sulfate proteoglycans, and the core protein of a particular family member, versican V1, were upregulated in the spinal cord of mice at peak clinical severity, correspondent with areas of inflammation. Versican V1 expression in the spinal cord rose progressively over the course of experimental autoimmune encephalomyelitis. A particular structure in the spinal cord and cerebellum that presented with intense upregulation of chondroitin sulfate proteoglycans is the leucocyte-containing perivascular cuff, an important portal of entry of immune cells into the central nervous system parenchyma. In these inflammatory perivascular cuffs, versican V1 and the glycosaminoglycan side chains of chondroitin sulfate proteoglycans were observed by immunohistochemistry within and in proximity to lymphocytes and macrophages as they migrated across the basement membrane into the central nervous system. Expression of versican V1 transcript was also documented in infiltrating CD45+ leucocytes and F4/80+ macrophages by in situ hybridization. To test the hypothesis that the chondroitin sulfate proteoglycans regulate leucocyte mobility, we used macrophages in tissue culture studies. Chondroitin sulfate proteoglycans significantly upregulated pro-inflammatory cytokines and chemokines in macrophages. Strikingly, and more potently than the toll-like receptor-4 ligand lipopolysaccharide, chondroitin sulfate proteoglycans increased the levels of several members of the matrix metalloproteinase family, which are implicated in the capacity of leucocytes to cross barriers. In support, the migratory capacity of macrophages in vitro in a Boyden chamber transwell assay was enhanced by chondroitin sulfate proteoglycans. Finally, using brain specimens from four subjects with multiple sclerosis with active lesions, we found chondroitin sulfate proteoglycans to be associated with leucocytes in inflammatory perivascular cuffs in all four patients. We conclude that the accumulation of chondroitin sulfate proteoglycans in the perivascular cuff in multiple sclerosis and experimental autoimmune encephalomyelitis boosts the activity and migration of leucocytes across the glia limitans into the central nervous system parenchyma. Thus, chondroitin sulfate proteoglycans represent a new class of molecules to overcome in order to reduce the inflammatory cascades and clinical severity of multiple sclerosis.


Assuntos
Encéfalo/patologia , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Encefalomielite Autoimune Experimental/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Medula Espinal/patologia , Animais , Encéfalo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Adjuvante de Freund/toxicidade , Laminina/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/toxicidade , RNA Mensageiro/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Versicanas/genética , Versicanas/metabolismo
12.
Int J Mol Med ; 40(6): 1657-1668, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039438

RESUMO

Cerebral white matter injury (WMI) is a recognized problem in premature infants, particularly in those with very low birth weights. Although the survival rate of premature infants has notably increased due to the advancement of modern medical treatments, their likelihood of developmental disability is higher than infants with an average birth weight. It has been previously reported that oligodendrocyte precursor cells (OPCs) are selectively vulnerable to WMI in premature infants. Following brain injury, glial scars may develop within the white matter. Their main constituent is chondroitin sulphate proteoglycans (CSPGs), revealing a potential association between CSPGs and OPCs. In the present study rat OPCs were cultured in vitro, and the effect of CSPGs on the proliferation, migration and differentiation of OPCs was determined. It was revealed that CSPGs did not affect proliferation, but they did inhibit the migration and differentiation of OPCs. It was also identified that the inhibitory effect of CSPGs was counteracted by laminin. Factor analysis revealed that CSPGs and laminin served interactive roles in OPC differentiation. The effect of CSPGs on OPCs was associated with the downregulation of ß1-integrin, indicating that CSPGs potentially competitively inhibit the ß1-integrin signaling pathway. Collectively, these results suggest that CSPGs serve a role as inhibitors of OPC differentiation and migration, as well as indicating an interaction between CSPGs and laminin. The present study has revealed a potential novel therapeutic target for WMI in premature infants, and identified ß1-integrin signaling as a pathological mechanism for dysfunctional myelination in white matter.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Laminina/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Animais , Células Cultivadas , Interações Medicamentosas , Células Precursoras de Oligodendrócitos/citologia , Ratos , Ratos Sprague-Dawley
13.
Dev Neurobiol ; 77(12): 1351-1370, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28901718

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150Glu dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1351-1370, 2017.


Assuntos
Axônios/ultraestrutura , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Acetilcarnitina/farmacologia , Actinas/metabolismo , Amidas/farmacologia , Animais , Células Cultivadas , Embrião de Galinha , Complexo Dinactina/metabolismo , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/ultraestrutura , Peptídeos/farmacologia , Piridinas/farmacologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Complexo Vitamínico B/farmacologia
14.
Contraception ; 95(6): 592-601, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28433626

RESUMO

OBJECTIVE: Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. STUDY DESIGN: Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. RESULTS: Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. CONCLUSION: These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. IMPLICATIONS: Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding.


Assuntos
Anticoncepcionais Femininos/efeitos adversos , Endométrio/irrigação sanguínea , Neovascularização Patológica/induzido quimicamente , Progestinas/efeitos adversos , Trombina/farmacologia , Hemorragia Uterina/induzido quimicamente , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/análise , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Endotélio/irrigação sanguínea , Endotélio/efeitos dos fármacos , Feminino , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Neovascularização Patológica/fisiopatologia , Proteínas Recombinantes/farmacologia , Células Estromais/química , Trombina/efeitos dos fármacos , Trombina/fisiologia
15.
Eur J Cell Biol ; 96(3): 266-275, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28336087

RESUMO

Dermatopontin (DPT) is a matricellular protein with cardinal roles in cutaneous wound healing. The protein is also reported to be altered in various anomalies including cancer. The present study is aimed to unravel the role of DPT in angiogenesis which is imperative in many physiological and pathological processes. DPT's capabilities on promoting angiogenesis were assessed using various in vitro and ex vivo systems. The results indicated that DPT enhances cell motility and induces lamellipodia formation in endothelial cells. Additionally, we noticed that DPT stimulates tube formation in endothelial cells when plated on a matrigel substrate. However, it was observed that DPT had no effect on the proliferation of endothelial cells even at higher concentrations and prolonged treatment periods. Additional experiments on CAM and aortic arch assays apparently depicted that DPT promotes neovascularisation and tube sprouting, thus unraveling its prominent role in angiogenesis. Further, PCR analysis revealed that endothelial cells are devoid of DPT expression, but when exogenously supplied, modulates the expression of transforming growth factor ß1 and integrin α3ß1 which are reported to have crucial roles in endothelial cell behaviour during angiogenesis. In conclusion, DPT possess vital pro-angiogenic properties and thus retains promising therapeutic values in managing chronic wounds and cancer.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/farmacologia , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Proteínas da Matriz Extracelular/farmacologia , Integrina alfa3beta1/metabolismo , Neovascularização Fisiológica , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Embrião de Galinha , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Humanos , Integrina alfa3beta1/genética , Proteínas Recombinantes , Fator de Crescimento Transformador beta/genética
16.
Blood ; 128(9): 1181-92, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27365423

RESUMO

The maintenance of hematopoietic stem cells (HSCs) during ex vivo culture is an important prerequisite for their therapeutic manipulation. However, despite intense research, culture conditions for robust maintenance of HSCs are still missing. Cultured HSCs are quickly lost, preventing their improved analysis and manipulation. Identification of novel factors supporting HSC ex vivo maintenance is therefore necessary. Coculture with the AFT024 stroma cell line is capable of maintaining HSCs ex vivo long-term, but the responsible molecular players remain unknown. Here, we use continuous long-term single-cell observation to identify the HSC behavioral signature under supportive or nonsupportive stroma cocultures. We report early HSC survival as a major characteristic of HSC-maintaining conditions. Behavioral screening after manipulation of candidate molecules revealed that the extracellular matrix protein dermatopontin (Dpt) is involved in HSC maintenance. DPT knockdown in supportive stroma impaired HSC survival, whereas ectopic expression of the Dpt gene or protein in nonsupportive conditions restored HSC survival. Supplementing defined stroma- and serum-free culture conditions with recombinant DPT protein improved HSC clonogenicity. These findings illustrate a previously uncharacterized role of Dpt in maintaining HSCs ex vivo.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/farmacologia , Células-Tronco Hematopoéticas/citologia , Masculino , Camundongos , Camundongos Transgênicos , Células Estromais/citologia , Células Estromais/metabolismo , Fatores de Tempo
17.
PLoS One ; 11(3): e0150226, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930497

RESUMO

Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment.


Assuntos
Movimento Celular/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Sulfato de Ceratano/farmacologia , Metaloproteinase 14 da Matriz/metabolismo , Melanoma/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Células HT29 , Humanos , Lumicana , Melanoma/patologia , Fatores de Transcrição da Família Snail
18.
Sci Rep ; 6: 22576, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971438

RESUMO

Transplantation of glial-restricted progenitors (GRPs) is a promising strategy for generating a supportive environment for axon growth in the injured spinal cord. Here we explored the possibility of producing a migratory stream of GRPs via directional cues to create a supportive pathway for axon regeneration. We found that the axon growth inhibitor chondroitin sulfate proteoglycan (CSPG) strongly inhibited the adhesion and migration of GRPs, an effect that could be modulated by the adhesion molecule laminin. Digesting glycosaminoglycan side chains of CSPG with chondroitinase improved GRP migration on stripes of CSPG printed on cover glass, although GRPs were still responsive to the remaining repulsive signals of CSPG. Of all factors tested, the basic fibroblast growth factor (bFGF) had the most significant effect in promoting the migration of cultured GRPs. When GRPs were transplanted into either normal spinal cord of adult rats or the injury site in a dorsal column hemisection model of spinal cord injury, a population of transplanted cells migrated toward the region that was injected with the lentivirus expressing chondroitinase or bFGF. These findings suggest that removing CSPG-mediated inhibition, in combination with guidance by attractive factors, can be a promising strategy to produce a migratory stream of supportive GRPs.


Assuntos
Movimento Celular/fisiologia , Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Laminina/farmacologia , Microscopia de Fluorescência , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/citologia , Neuroglia/citologia , Ratos Transgênicos , Traumatismos da Medula Espinal/fisiopatologia
19.
Biochem Biophys Res Commun ; 471(4): 522-7, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26896769

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are a major component of glial scars, inhibiting axonal growth in the central nervous system. Protein tyrosine phosphatase, receptor type S (PTPσ) has been identified as a receptor for CSPGs, whereas its downstream signaling pathway remains to be fully understood. Here, we report that nucleoside diphosphate kinase 2 (NME2) interacts with PTPσ. We screened proteins associated with PTPσ by mass spectrometry, and obtained NME2. Immunoprecipitation analysis revealed that NME2 associated with the PTPσ intracellular domain in HEK-293T cells. NME2 was expressed in the cytoplasm and nucleus of cortical neurons, and knockdown of NME2 in the cortical neurons completely rescued neurite outgrowth inhibition induced by CSPGs. These results demonstrate that NME2 associates with PTPσ to elicit neurite outgrowth inhibition in response to CSPGs.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Neuritos/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Núcleo Celular/enzimologia , Córtex Cerebral/citologia , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Citoplasma/enzimologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Nucleosídeo NM23 Difosfato Quinases/genética , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/enzimologia , Neurônios/ultraestrutura , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética
20.
Mol Cell Neurosci ; 69: 22-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26463051

RESUMO

Within the adult central nervous system the lack of guidance cues together with the presence of inhibitory molecules produces an environment that is restrictive to axonal growth following injury. Consequently, while clinical trials in Parkinson's disease (PD) patients have demonstrated the capacity of fetal-derived dopamine neurons to survive, integrate and alleviate symptoms, the non-permissive host environment has contributed to the incomplete re-innervation of the target tissue by ectopic grafts, and even more noticeable, the poor reconstruction of the midbrain dopamine pathways following homotopic midbrain grafting. One such inhibitory molecule is the chondroitin sulfate proteoglycan (CSPG), a protein that has been shown to impede axonal growth during development and after injury. Digestion of CSPGs, by delivery of the bacterial enzyme chondroitinase ABC (ChABC), can improve axonal regrowth following a number of neural injuries. Here we examined whether ChABC could similarly improve axonal growth of transplanted dopamine neurons in an animal model of PD. Acute delivery of ChABC, into the medial forebrain bundle, degraded CSPGs along the nigrostriatal pathway. Simultaneous homotopic transplantation of dopaminergic progenitors, into the ventral midbrain of ChABC treated PD mice, had no effect on graft survival but resulted in enhanced axonal growth along the nigrostriatal pathway and reinnervation of the striatum, compared to control grafted mice. This study demonstrates that removal of axonal growth inhibitory molecules could significantly enhance dopaminergic graft integration, thereby holding implications for future approaches in the development of cell replacement therapies for Parkinsonian patients.


Assuntos
Condroitinases e Condroitina Liases/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/metabolismo , Neurogênese/fisiologia , Células-Tronco/citologia , Animais , Axônios/metabolismo , Proteoglicanas de Sulfatos de Condroitina/farmacologia , Camundongos , Doença de Parkinson/tratamento farmacológico , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...